Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sesbania mosaic virus (SeMV) infectious clone: possible mechanism of 3' and 5' end repair and role of polyprotein processing in viral replication.

Identifieur interne : 000510 ( Main/Exploration ); précédent : 000509; suivant : 000511

Sesbania mosaic virus (SeMV) infectious clone: possible mechanism of 3' and 5' end repair and role of polyprotein processing in viral replication.

Auteurs : Kunduri Govind [Inde] ; Kristiina M Kinen ; Handanahal S. Savithri

Source :

RBID : pubmed:22355344

Descripteurs français

English descriptors

Abstract

Sesbania mosaic virus (SeMV) is a positive stranded RNA virus belonging to the genus Sobemovirus. Construction of an infectious clone is an essential step for deciphering the virus gene functions in vivo. Using Agrobacterium based transient expression system we show that SeMV icDNA is infectious on Sesbania grandiflora and Cyamopsis tetragonoloba plants. The efficiency of icDNA infection was found to be significantly high on Cyamopsis plants when compared to that on Sesbania grandiflora. The coat protein could be detected within 6 days post infiltration in the infiltrated leaves. Different species of viral RNA (double stranded and single stranded genomic and subgenomic RNA) could be detected upon northern analysis, suggesting that complete replication had taken place. Based on the analysis of the sequences at the genomic termini of progeny RNA from SeMV icDNA infiltrated leaves and those of its 3' and 5' terminal deletion mutants, we propose a possible mechanism for 3' and 5' end repair in vivo. Mutation of the cleavage sites in the polyproteins encoded by ORF 2 resulted in complete loss of infection by the icDNA, suggesting the importance of correct polyprotein processing at all the four cleavage sites for viral replication. Complementation analysis suggested that ORF 2 gene products can act in trans. However, the trans acting ability of ORF 2 gene products was abolished upon deletion of the N-terminal hydrophobic domain of polyprotein 2a and 2ab, suggesting that these products necessarily function at the replication site, where they are anchored to membranes.

DOI: 10.1371/journal.pone.0031190
PubMed: 22355344
PubMed Central: PMC3280281


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sesbania mosaic virus (SeMV) infectious clone: possible mechanism of 3' and 5' end repair and role of polyprotein processing in viral replication.</title>
<author>
<name sortKey="Govind, Kunduri" sort="Govind, Kunduri" uniqKey="Govind K" first="Kunduri" last="Govind">Kunduri Govind</name>
<affiliation wicri:level="1">
<nlm:affiliation>Indian Institute of Science, Bangalore, Karnataka, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Indian Institute of Science, Bangalore, Karnataka</wicri:regionArea>
<wicri:noRegion>Karnataka</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="M Kinen, Kristiina" sort="M Kinen, Kristiina" uniqKey="M Kinen K" first="Kristiina" last="M Kinen">Kristiina M Kinen</name>
</author>
<author>
<name sortKey="Savithri, Handanahal S" sort="Savithri, Handanahal S" uniqKey="Savithri H" first="Handanahal S" last="Savithri">Handanahal S. Savithri</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22355344</idno>
<idno type="pmid">22355344</idno>
<idno type="doi">10.1371/journal.pone.0031190</idno>
<idno type="pmc">PMC3280281</idno>
<idno type="wicri:Area/Main/Corpus">000530</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000530</idno>
<idno type="wicri:Area/Main/Curation">000530</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000530</idno>
<idno type="wicri:Area/Main/Exploration">000530</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sesbania mosaic virus (SeMV) infectious clone: possible mechanism of 3' and 5' end repair and role of polyprotein processing in viral replication.</title>
<author>
<name sortKey="Govind, Kunduri" sort="Govind, Kunduri" uniqKey="Govind K" first="Kunduri" last="Govind">Kunduri Govind</name>
<affiliation wicri:level="1">
<nlm:affiliation>Indian Institute of Science, Bangalore, Karnataka, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Indian Institute of Science, Bangalore, Karnataka</wicri:regionArea>
<wicri:noRegion>Karnataka</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="M Kinen, Kristiina" sort="M Kinen, Kristiina" uniqKey="M Kinen K" first="Kristiina" last="M Kinen">Kristiina M Kinen</name>
</author>
<author>
<name sortKey="Savithri, Handanahal S" sort="Savithri, Handanahal S" uniqKey="Savithri H" first="Handanahal S" last="Savithri">Handanahal S. Savithri</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (genetics)</term>
<term>Agrobacterium (virology)</term>
<term>Base Sequence (MeSH)</term>
<term>Blotting, Northern (MeSH)</term>
<term>Blotting, Western (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>DNA, Complementary (genetics)</term>
<term>Genome, Viral (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mosaic Viruses (pathogenicity)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Open Reading Frames (MeSH)</term>
<term>Polyproteins (genetics)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Viral (genetics)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Sequence Homology, Nucleic Acid (MeSH)</term>
<term>Sesbania (genetics)</term>
<term>Sesbania (virology)</term>
<term>Viral Proteins (genetics)</term>
<term>Virus Replication (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (génétique)</term>
<term>ARN messager (génétique)</term>
<term>ARN viral (génétique)</term>
<term>Agrobacterium (génétique)</term>
<term>Agrobacterium (virologie)</term>
<term>Cadres ouverts de lecture (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Génome viral (MeSH)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Polyprotéines (génétique)</term>
<term>Protéines virales (génétique)</term>
<term>RT-PCR (MeSH)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Réplication virale (physiologie)</term>
<term>Sesbania (génétique)</term>
<term>Sesbania (virologie)</term>
<term>Similitude de séquences d'acides nucléiques (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Technique de Northern (MeSH)</term>
<term>Technique de Western (MeSH)</term>
<term>Virus des mosaïques (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Complementary</term>
<term>Polyproteins</term>
<term>RNA, Messenger</term>
<term>RNA, Viral</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium</term>
<term>Sesbania</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>ARN messager</term>
<term>ARN viral</term>
<term>Agrobacterium</term>
<term>Polyprotéines</term>
<term>Protéines virales</term>
<term>Sesbania</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Mosaic Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus des mosaïques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Réplication virale</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Agrobacterium</term>
<term>Sesbania</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Agrobacterium</term>
<term>Sesbania</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Blotting, Northern</term>
<term>Blotting, Western</term>
<term>Cells, Cultured</term>
<term>Genome, Viral</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Open Reading Frames</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Sequence Homology, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cadres ouverts de lecture</term>
<term>Cellules cultivées</term>
<term>Données de séquences moléculaires</term>
<term>Génome viral</term>
<term>Mutagenèse dirigée</term>
<term>RT-PCR</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Similitude de séquences d'acides nucléiques</term>
<term>Séquence nucléotidique</term>
<term>Technique de Northern</term>
<term>Technique de Western</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sesbania mosaic virus (SeMV) is a positive stranded RNA virus belonging to the genus Sobemovirus. Construction of an infectious clone is an essential step for deciphering the virus gene functions in vivo. Using Agrobacterium based transient expression system we show that SeMV icDNA is infectious on Sesbania grandiflora and Cyamopsis tetragonoloba plants. The efficiency of icDNA infection was found to be significantly high on Cyamopsis plants when compared to that on Sesbania grandiflora. The coat protein could be detected within 6 days post infiltration in the infiltrated leaves. Different species of viral RNA (double stranded and single stranded genomic and subgenomic RNA) could be detected upon northern analysis, suggesting that complete replication had taken place. Based on the analysis of the sequences at the genomic termini of progeny RNA from SeMV icDNA infiltrated leaves and those of its 3' and 5' terminal deletion mutants, we propose a possible mechanism for 3' and 5' end repair in vivo. Mutation of the cleavage sites in the polyproteins encoded by ORF 2 resulted in complete loss of infection by the icDNA, suggesting the importance of correct polyprotein processing at all the four cleavage sites for viral replication. Complementation analysis suggested that ORF 2 gene products can act in trans. However, the trans acting ability of ORF 2 gene products was abolished upon deletion of the N-terminal hydrophobic domain of polyprotein 2a and 2ab, suggesting that these products necessarily function at the replication site, where they are anchored to membranes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22355344</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>06</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Sesbania mosaic virus (SeMV) infectious clone: possible mechanism of 3' and 5' end repair and role of polyprotein processing in viral replication.</ArticleTitle>
<Pagination>
<MedlinePgn>e31190</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0031190</ELocationID>
<Abstract>
<AbstractText>Sesbania mosaic virus (SeMV) is a positive stranded RNA virus belonging to the genus Sobemovirus. Construction of an infectious clone is an essential step for deciphering the virus gene functions in vivo. Using Agrobacterium based transient expression system we show that SeMV icDNA is infectious on Sesbania grandiflora and Cyamopsis tetragonoloba plants. The efficiency of icDNA infection was found to be significantly high on Cyamopsis plants when compared to that on Sesbania grandiflora. The coat protein could be detected within 6 days post infiltration in the infiltrated leaves. Different species of viral RNA (double stranded and single stranded genomic and subgenomic RNA) could be detected upon northern analysis, suggesting that complete replication had taken place. Based on the analysis of the sequences at the genomic termini of progeny RNA from SeMV icDNA infiltrated leaves and those of its 3' and 5' terminal deletion mutants, we propose a possible mechanism for 3' and 5' end repair in vivo. Mutation of the cleavage sites in the polyproteins encoded by ORF 2 resulted in complete loss of infection by the icDNA, suggesting the importance of correct polyprotein processing at all the four cleavage sites for viral replication. Complementation analysis suggested that ORF 2 gene products can act in trans. However, the trans acting ability of ORF 2 gene products was abolished upon deletion of the N-terminal hydrophobic domain of polyprotein 2a and 2ab, suggesting that these products necessarily function at the replication site, where they are anchored to membranes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Govind</LastName>
<ForeName>Kunduri</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Indian Institute of Science, Bangalore, Karnataka, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mäkinen</LastName>
<ForeName>Kristiina</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Savithri</LastName>
<ForeName>Handanahal S</ForeName>
<Initials>HS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020815">Polyproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015152" MajorTopicYN="N">Blotting, Northern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="Y">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009029" MajorTopicYN="N">Mosaic Viruses</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020815" MajorTopicYN="N">Polyproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049931" MajorTopicYN="N">Sesbania</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>08</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>01</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22355344</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0031190</ArticleId>
<ArticleId IdType="pii">PONE-D-11-14800</ArticleId>
<ArticleId IdType="pmc">PMC3280281</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2000 Jan;21(1):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10652152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2011 Oct 3;585(19):2979-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21855544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Nov;81(Pt 11):2783-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2001;146(2):209-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11315633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):930-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Jan 5;318(1):429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 4;101(18):6852-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1974 Nov 8;252(5479):169-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4419109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Apr;64(4):1573-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2157045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 May;65(5):2757-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1850050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1992 Dec 15;122(2):383-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1336757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Dec 30;151(1-2):119-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7828859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Jan 10;206(1):108-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7831766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Apr 25;244(1):79-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9581781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Dec 20;252(2):376-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9878617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Jul 20;338(1):96-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15936794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 26;280(34):30291-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2006 Jun;32(3):321-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2007 Jan;123(1):95-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Jan;9(1):9-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2007;152(3):635-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2007 May;88(Pt 5):1620-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17412995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):325-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18250230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2008;451:477-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18370275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2008;451:491-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18370276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Dec 5;382(1):83-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Sep;7(7):682-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19627561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Sep-Oct;1789(9-10):495-517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19781674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 Jan 5;396(1):106-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19861224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Feb 5;584(3):571-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2010 Mar;164(1-2):101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20026122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Feb 1;61(3):371-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19891703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 Jun 5;401(2):280-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20332053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2010 Jun;91(Pt 6):1373-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20335491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Jan;278(2):257-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21122074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(1):e15609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21246040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2011 Feb;92(Pt 2):445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Jul;74(14):6231-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10864632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="M Kinen, Kristiina" sort="M Kinen, Kristiina" uniqKey="M Kinen K" first="Kristiina" last="M Kinen">Kristiina M Kinen</name>
<name sortKey="Savithri, Handanahal S" sort="Savithri, Handanahal S" uniqKey="Savithri H" first="Handanahal S" last="Savithri">Handanahal S. Savithri</name>
</noCountry>
<country name="Inde">
<noRegion>
<name sortKey="Govind, Kunduri" sort="Govind, Kunduri" uniqKey="Govind K" first="Kunduri" last="Govind">Kunduri Govind</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000510 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000510 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22355344
   |texte=   Sesbania mosaic virus (SeMV) infectious clone: possible mechanism of 3' and 5' end repair and role of polyprotein processing in viral replication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22355344" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024